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Adopting the standard mathematical framework for describing reduced 
dynamics, we derive two formal identities for the density operator of an open 
quantum system. Each of these is equivalent to the old Nakajima-Zwanzig 
equation. The first identity is local in time. It contains the inverse of the dynami- 
cal map which governs the evolution of the density operator. We indicate a time 
interval on which this inverse exists. The second identity constitutes a suitable 
starting point for going beyond the Markov approximation in a controlled way. 
On the basis of  the Bloch equations we argue once more that in studying 
quantum dissipation one has to pay attention to the von Neumann conditions. 
In the Nakajima-Zwanzig equation we make the first Born approximation. 
The ensuing master equation possesses the correct weak-coupling limit. While 
proving this rather obvious but at the same time important statement, we 
elucidate the mathematical methods which underlie the weak-coupling limit. 
Moving to a two-dimensional Hilbert space, we find that both for short and for 
long times our approximate master equation respects the von Neumann condi- 
tions. Assuming exponential decay for correlation functions, we propose a 
physical limit in which the solutions for the density operator become Markovian 
in character. We confirm the well-known statement that, as seen from a macro- 
scopic standpoint,  the system starts from an effective initial condition. The 
approach to equilibrium is exponential. The accessory relaxation constants can 
differ from the usual Bloch parameters ~,• and ~'ll by more than 50%. 
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1. I N T R O D U C T I O N  

It is a well-known fact that the dynamical behavior of an open quantum 
system cannot be described by means of a wave function. In order to store 
all information on the system at a given time t, one needs to introduce a 
density operator p(t).  (1-3) Often, it is assumed that the evolution of the 
density operator is governed by a Markovian master equation ~ ( t ) =  Lp(t). 
The generator L is independent of time, and can be constructed such that 
the yon Neumann conditions are fulfilled, c4) On the other hand, the time 
t may not be chosen negative. Hence, the Markov approximation has the 
drawback that irreversibility is brought in from the very outset. 

Strictly speaking, the evolution of any open quantum system is com- 
pletely reversible in time. tS) Under normal conditions, Poincar6 recurrence 
times are very long, so that the evolution may be looked upon as an irre- 
versible process. Sometimes, it is possible to really observe the reversible 
character of the dynamics. For instance, periodic energy exchange can 
occur between an atom and a finite number of electromagnetical modes, c6) 
It is obvious that in exploring such dynamics one cannot resort to the 
Markov approximation. Incidentally, the last remark may also apply to 
cases in which we do observe an irreversible evolution. As an illustration, 
we mention that for long times the decay of excited states can obey a 
power law/7) The decay that is predicted on the basis of a Markovian 
master equation always takes place via exponential functions. (8,9) 

The Markov approximation can be circumvented by proposing 
dynamical maps for the density operator the form of which differs from 
exp(Lt). "~ Unfortunately, these maps do not provide us with a useful 
master equation, because of ordering problems. Remember that a generic 
operator O(t) does not commute with its time derivative. All in all, explicit 
evaluation of the density operator becomes a hard job. 

In the present article we aim at improving on the Markov approxima- 
tion by deriving a master equation right from the start. In the process of 
doing this, one must bear in mind three points. (i) Our equation should 
not have a phenomenological character. In other words, a definite relation 
should exist with the exact master equation for the density operator. 
(ii) The yon Neumann conditions should be satisfied, i.e., the basic laws of 
quantum mechanics should be respected. (iii) In the Markovian limit the 
solution of our equation should coincide with the exact density operator. 
Although non-Markovian master equations 3 were already investigated 
during the 1960s, (]3) the second point has received little attention up to 

As will be demonstrated later on, the exact master equation for the density operator can be 
cast in a form that is local in time. Hence, one should refrain from using the term "non- 
Markovian. ''~3-') However, we shall adapt ourselves to the literature. 
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now. This is strange, because the yon Neumann conditions impose restric- 
tions on the rate at which relaxation takes place, tat In Section 2 we discuss 
this issue at an elementary level. 

One may severely doubt whether the above constraints allow for non- 
Markovian master equations that can be treated analytically. In Section 3 
we derive an evolution equation which meets all constraints, except for the 
positivity of the density operator. The corresponding error can be made 
arbitrarily small at the expense of losing analytical simplicity. In the 
literature (H~ it has been argued that such an approach can lead to physi- 
cally relevant results. It should be remarked, however, that we shall confine 
ourselves to systems for which an external driving field is lacking. 

Use will be made of the standard ~4) mathematical framework for 
handling open quantum systems. This permits us to make a small excur- 
sion in Section 3. It has been conjectured (~s~ that the exact dynamical map 
for the density operator can be inverted. We construct the inverse, and 
specify a time interval on which it exists. 

The simplest form of our non-Markovian master equation can be 
found in a straightforward way. In the exact evolution equation one has to 
discard all correlation functions of order three and higher, as well as all 
products of correlation functions. ~3'~6) For the ensuing equation we 
present in Section 4 a detailed discussion of constraints (ii) and (iii). Since 
our findings turn out to be quite reasonable, it makes sense to investigate 
under which circumstances the simplest non-Markovian master equation has 
solutions that possess a Markovian nature. This is the subject of Section 5. 

In order to arrive at explicit results, the two-point correlation func- 
tions will be fitted to simple expressions that decay exponentially. For 
a two-level system we find that the time interval [0, T],  during which 
non-Markovian effects play a role, may be very short. It seems as if the 
system starts from an effective initial state, and subsequently evolves in 
a Markovian fashion. Besides effective initial conditions, I~~ we also find 
effective values for relaxation constants. As shown in Section 6, differences 
from the usual constants ~'.c and Yu can be surprisingly big. 

This paper might appeal to a wide audience, because we do not work 
within the context of a specific model. For that reason our paper is self- 
contained, especially in discussing constraint (iii). The reference list con- 
tains a considerable number of textbooks. This should enable the interested 
reader to place the subject of quantum dissipation in a broader perspective. 
In the next section we briefly review the theory of Markovian master 
equations so as to develop a few ideas, and introduce some definitions. 

822/80/1-2-18 
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2. M A R K O V I A N  M A S T E R  E Q U A T I O N S  

Consider a closed nonrelativistic quantum system. It is described by 
the density operator p(t) which acts on the Hilbert space ~f. If the 
Hamiltonian H '  does not depend on the time t, then the density operator 
evolves according to p(t)= exp( - iH t )  p(O)exp(iHt), where the convention 
H=H'/h has been used. The expectation value ( H ) = T r ( H p )  is inde- 
pendent of time, so dissipation of energy cannot take place. It is well 
known it-3) that the density operator fulfils the yon Neumann conditions. 
These are given by 

T r p ( / ) =  1, p*(t)=p(t), (~1 p(t)[~,b> >~0 V I~) ~,r (1) 

A fundamental way to introduce dissipation consists of coupling the 
quantum system 5 p to a reservoir ~.  One then departs from the following 
Hamiltonian: 

H=Hs, |  1~+ 1 s~ |  + 2 V ~  (2) 

The coupling parameter 2 lies in the interval [0, 1 ]. The operators p(t) and 
H now act on the product Hilbert space Jgs~ | ~ .  The Hilbert space affs~ 
may be of finite dimension. Although not beyond discussion, (1~ it is 
customary to use the factorization p(0)= Ps~ |  as initial condition. Of 
course, both p~ and p~ must satisfy (1). 

The expectation value of each system observable Ose can be written as 
Trs~[ Os~pse(t)]. Hence, the reduced density operator Pse(t) is a quantity of 
central interest. Its time evolution is determined by (9) 

psi(t) = ~. Wkt(tlpseW1,(t), ~ W~t(t) Wkt(t)=lse (3) 
k , l =  1 k , l =  1 

The operators { Wkl} are defined as 

<~1 wk,(t)Ix> = 2)/2<,,b |  e - 'm Ix| (4) 

with 1~) and Ix> arbitrary states of ~r Use has been made of the 
expansion Pa~ = Zff=l 2k Ifk><fkl, where the reals {2k} are nonnegative 
and satisfy the condition ]~k~__l 2k= 1. The states {Ifk)} form an ortho- 
normal basis of Y#~. From (3) we infer that pse(t) obeys the von Neumann 
conditions at all times. 

In general, it is impossible to calculate the reduced density operator 
exactly. Often, a way out is offered by the Markov approximation. One 
adopts the following master equation as a starting point: 

1~ s~( t ) = Lp ~e( t) (5) 
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The generator L is a fixed linear operator that acts on the set of system den- 
sity operators. The formal solution of (5) reads p~,(t)= e x p ( L t ) p z -  A,ps~. 
The map A, has the semigroup property A,+s = AtA,. 

The Markovian master equation (5) can be constructed such that 
the yon Neumann conditions are respected. One transforms (3)-(4) to the 
interaction picture, and takes the weak-coupling or van Hove (~s) limit 
t--* oo, 2 2 =z/t, with T constant/~9) As an alternative, one may try to find 
all maps of the form (3) which possess the semigroup property. 14'2~ This 
can be done by employing the mathematical notion of complete positivity. 

The second method provides us with the most general Markovian 
master equation which does not violate the von Neumann conditions. By 
making a special choice of parameters one recovers the master equation 
that is obtained via the first method. The most general form of (5) can also 
be found by taking in (3)-(4) the singular-coupling limit. (22) However, the 
conditions under which this limit may be taken are rather unphysical. 

Observe that the master equation (5) cannot be derived for both 
positive and negative times. Consider the weak-coupling limit, for instance, 
where the inequality z >/0 is manifest. Hence, if one invokes the Markov 
approximation, then the dynamical behavior of the system S~ will always 
be irreversible. Notice that the evolution described by (3) is completely 
reversible/s) 

While working with Markovian master equations it is important to 
be aware of the existence of the von Neumann conditions. To illustrate 
this remark, we set the dimension of ~r162 equal to 2, and call the corre- 
sponding orthonormal basis {ll >, [2> }. Then an example of (5) is given by 
the f a m o u s  (3"23-26) Bloch equations for the reduced density matrix 
po = <i1 p~  [j>, with i, j e  {1, 2}. They read 

~612 = - ( 7 •  + icoo)P12, d =  - T j j ( d -  d,~) (6) 

We defined d = ( P 2 2 - - P  11)/2. The inversion d and the constants Y_L, Ylf, COO, 
d~ are real. 

Because of the relations P]I + P22 = 1 and P21 = P*2, the density matrix 
is completely determined by the solutions of (6). These are given by 
PiE(t) = p12(0) exp[ - ( 7 .  +/COo)t] and d(t) =do~ + [d(0) -doo]  exp(-y l l  t). 
The density matrix is Hermitian and its trace equals 1, so we only have to 
check positivity. 

A Hermitian matrix A with trace 1 is positive iff the inequality 
1a1212 ~ a l l  a22 is obeyed. For the reduced density matrix this inequality 
comes out as 

Ip,2(t)l 2 + d(t) 2 ~< �88 (7) 
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Since psi(0) is a density operator, the above condition is equivalent to the 
following set of constraints: 

Ido~l ~�89 y• yH/Y• ~<2 (8) 

The necessity of the last constraint follows by taking P12(0)= [do~[ = 1/2, 
d(0) = 0, and t ~ ~ .  To prove sufficiency of (8) one should notice 
that 2 ]d(t)[ ~< f ( t )  = 1 - ( 1 - 2 [d(0)[ ) exp( - ~ll t). Furthermore, one has 
[ 1 - 4 d ( 0 )  2] exp(-),llt)~< 1 - f ( t )  2. By combining these inequalities with 
(8) we can derive (7). Altogether, we see that the Bloch equations (6) 
respect the von Neumann conditions iff (8) is true. 

Traditionally, the Bloch equations are derived t3"23) by writing down 
the perturbative series 

eimtp(t)e -im'=p(O) + (--2)" dtl 
n =  1 

dt2.., f~"-' dt,, Tr t 2 . . . . .  t,,) 
(9) 

and discarding all contributions of order 2 3 and higher. The operators 
{ T t'~} are defined as 

T~ t2 ..... tn)=i"[V(tt), [ V(t2) ..... [V(t,,),p(O)]...]] (10) 

with V(t)=exp(iHot)V~,.~exp(-iHot) and H o = H ( 2 = 0 ) .  The operator 
on the left-hand side of (9) has trace one, as well as the operator p(0). 

Since each operator T t"~ has zero trace and is self-adjoint, the matrix 
element (~,,I Tt"~I~g,,) is negative for certain states I~,,) c ~ .  Therefore, 
by truncating the right-hand side of (9) the positivity of the left-hand side 
might be destroyed. This may lead to erroneous predictions. Indeed, if the 
Bloch equations are derived on the basis of fourth-order perturbation 
theory, then one finds t27~ that ~11 c a n  be greater than 2y• In view of (8) 
such a prediction contradicts the von Neumann conditions. 

3. ALTERNATIVES TO THE N A K A J I M A - Z W A N Z I G  EQUATION 

As appears from the previous section, there exists a well-developed 
theory on quantum dynamical maps which have the semigroup property. 
This theory can be utilized to make detailed predictions on the time evolu- 
tion of system observables, t9"17'28) For the exact map (3)-(4) the situation 
is entirely different. One can merely prove formal results which are of little 
use as seen from a practical point of view. For instance, a formal identity 
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for the reduced density operator can be derived, which is known as the 
Nakajima-Zwanzig equation.it 7), 4 

Below we shall demonstrate that the Nakajima-Zwanzig equation is 
not the only exact result that can be established. There exist other formal 
identities for the reduced density operator. These might be of help in 
gaining further information on the map (3)-(4). We shall start at an 
abstract mathematical level, and work in the same setting as Davies. ~4"j9~ 

All density operators p acting on ~,~ are elements of a Banach space 
with norm I1-111.129) The subscript 1 will be omitted. We suppose that 

exp(Zt) and e x p [ ( Z + / 1 A ) t ]  are strongly continuous one-parameter 
groups of isometries on ~ ,  with/l  ~ [0, 1 ]. The operator A has domain ~ ,  
and is bounded with respect to the sup-norm on ~.  The operators P0 and 
P~ = 1 - P o  are projections on ~ which commute with the generator Z. We 
employ the abbreviations ~ =  P ~ ,  Z i  = P~Z, and Ou= P~OP/, with O an 
operator on ~.  In Section 4 we shall give a physical meaning to the 
operators A, Po, and Z. 

In the interaction picture the reduced density operator is formally 
given by 

Woo( t ) p = e-(Z~ + XA~176 Po e ~z + xA)' PoP (11) 

The operator Woo(t) has domain ~;  the operators exp[(Zo+/1Aoo) t ]  
form a one-parameter group of isometries (ref. 14, pp. 138, 139). Let 
exp[(E + F ) t ]  and exp(Et) be one-parameter groups on ~.  If the operator 
F is bounded, then one can prove the identity (ref. 14, pp. 68, 69) 

e ( e + F l ' p = e E ' p +  d s e e I ' - ' ) F e I e + F ) ' p  (12) 

where t is positive. 
We replace the generator E +  F by Z +/1A. The choices F=/1Ao~ and 

F=/1Alo lead to the following Nakajima-Zwanzig equation (ref. 14, 
pp. 138, 139): 

Wo0(t).-- Po. +/12 (13) 

with t positive. We defined 

A u( t ) p = e - ( z '  + xA~)t A ij e( Z/+ ~"4J/)t p 

4 Ref. 17 lists all of the original papers on the Nakajima-Zwanzig equation. 

(14) 
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On each closed interval [0, to] the operators Woo(t) and /~v(t) are 
uniformly bounded by the real number M exp(0tto), where ct and M are 
positive (ref. 14, pp. 68, 69). Together with (13) this implies the existence of 
a real function re(t) and positive constants a, e such that 

IlWoo(t) Popll >~m(t) IIPopll V p e ~  (15) 

where m(t)>e for t~ [0 ,  a]. Hence, on the interval [0, a]  the operator 
Woo(t) with domain ~o possesses a bounded inverse. (3~ The norm 
II W~(t) l l  is uniformly bounded by the constant 1/e. From this property 
and continuity of Woo(t)p we deduce that the element W~ot(t)p of ~ is 
continuous on the interval [0, a]  with respect to the norm on ~.  

In order to construct the operator W~o](t), we replace in (13) t by s 
as well as p by W~o~(t)p. The ensuing equation contains the operators 
W~ol(t) and Uoo(S, t) - Woo(S) W~ol(t). The former can be eliminated by 
replacing in (13) p by W~ol(t)p once more. We now arrive at 

Uoo(S, t)p= P o p -  22 f~ du f~ dv Aol(U) Yl,o(V) Uoo(V, t)p (16) 

with O <<. s <~ t ~ a. 
All of the operators figuring in the integrand of (16) are uniformly 

bounded on the interval [0, a].  Therefore, the integral equation (16) can 
be solved formally by performing an iteration ad infinitum. One finds 

Uoo(S, t)p 

= PoP + (-22)" dtl dtz dt3 dt4"'" dt2,,- i dtz,, 
n =  I t2 2 n - 2  

X.4ol(tl),~lo(t2)-4ol(t3).410(t4)"" Aol(t2,_l) Alo(t2,)p (17) 

We iterate (13) and act with the series for the operator Woo(t) on the 
iterative solution for Uoo(S =0,  t)p. The outcome is PoP, as expected. 

Owing to the result (17), one can derive an identity which may be 
compared to the Markovian master equation (5). From (13) it is manifest 
that the time derivative of Woo(t)p exists for all p E ~.  With the help of the 
operator Uoo(s, t) the derivative can be cast into the following form: 

d 
dt [ W~176 = Loo(t) Woo(t)p (18) 
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We made use of the definition 

Loo(t)p = 22Aot(t) ~o ds Alo(S) Uoo(S, t)p (19) 

with O <~ t <~ a. 
The formal master equation (18) and the Markov equation (5) have 

two properties in common: all of the time arguments are equal to each 
other, and for each operator the domain and the range lie inside the 
subspace ~o. At the same time, the identity (18) is equivalent to the 
Nakajima-Zwanzig equation (13). The complicated operator Loo (t) can be 
evaluated formally by employing (17). We remark that equations of the 
type (18) have been used to study quantum dissipation in the presence of 
external fields (ref. 31; ref. 9, p. 40). We should also mention that there exist 
several methods for making the exact evolution equation local in 
time.<~5.16.32.33) 

One may raise the question of whether the interval [0, a] extends to 
physically interesting times. For A,1 = 0 we can give an estimate of a by 
making use of the assumption (ref. 14, p. 143) 

: dx [IAoleZ'XAioll =b< oo (20) 

One can generate the above integral in (13) by interchanging the order of 
integration. It turns out that one may choose m(t)= 2 -  exp(22bt) in (15), 
so that we find (log 2)/(22b) as an upper bound for a. Hence, for AH = 0  
the result (5) can be derived from (18) by taking the weak-coupling limit, 
provided that t = 22t is smaller than (log 2)lb. The last statement remains 
true if we allow the operator A,] to differ from zero�9 This can be proved 
on the basis of assumption (5.13) of ref. 14. 

We come to the discussion of a second identity for the reduced density 
operator. Choose E = Z and F =  2A in (12), and iterate the ensuing integral 
equation n times. Put projectors Po around each term so that an equation 
for the operator Poexp[(Z+AA)t]  Po is created�9 It contains an n-fold 
integral with the operator (P0 + PI) exp[ (Z + hA) t] Po under the last 
integral sign. Elaborate this operator by using the identity (12) twice. The 
choices to be made are E + F = Z + 2 A ,  F=;LA]o and E = Z I ,  F=AAll. 

Going over to the interaction picture and taking the operator Aoo 
equal to zero, we finally arrive at the identity 

n - -  1 ! t k _ l  

Woo(t)p=Pop+ ~ 2 k ; i d t , ' " f o  dtkCtoko'(t, ..... tk)p 
k = l  

+ 2" dt~ dr. r(.~:, t,,) Woo(t,,)p �9 " " ~ "  0 0  I L 1 , ' " ,  
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..~_ )~ ,  + 1 Io dtl ... Io" dt,+ 1 C<o'~ + l)(tl ..... t,,+ l) Woo(t,+ 1)P 

r l  ~ n +  I 
+ ~ n + 2  dtl dtn+, r ( - ) / ,  tn) �9 " " - "~ Ol ~.~1 , ' " ,  

~0 

xe-Z"+'A1]e(Z'+~A")('n+'-'o+'-)dloeZ"+:Woo(t,+2)p (21) 

with t positive and n a positive integer. We used the abbreviations 

C(n)r t o ~,l ..... t , ) p = P i A ( t l )  A( t2 ) . . .A (G)  Pyp (22) 

and A(t) = exp( - -Z t )A  exp(Zt). 
If A00 equals zero, then (21) is an exact equation for the reduced den- 

sity operator�9 In deriving such equations one has to use one-parameter 
groups the generator of which depends on the awkward projector P~. The 
advantage of (21) is that all of the troublesome operators have been 
gathered in one single contribution, which vanishes if A i~ equals zero�9 

Let us discard in (21) the term containing A~,  and replace Woo(t) by 
the new operator Woo(t; n). The ensuing equation is of practical value, 
because one-parameter groups other than exp(Zt) no longer occur. The 
latter describes the free evolution of the system and reservoir. We have to 
admit, however, that the operator Wo0(t; n)p does not automatically obey 
the von Neumann conditions. To be specific, the operator Woo(t; n)p is 
self-adjoint and has trace 1, but its positivity is not guaranteed. 

The right-hand side of (21) includes the first n terms out of the per- 
turbation expansion for Woo(t)p. Therefore, the difference between the 
operators Woo(t)p and W0o(t; n)p is of the order A n at least. In other 
words, a time interval [0, to] will exist on which the operators Woo(t)p 
and Woo(t;n)p almost coincide. As long as O<~t<<.t o the condition of 
positivity cannot be severely violated. Note that the greater we choose the 
integer n, the greater the time to will be. One can rigorously prove that for 
all p ~ ~ and a > 0 the operator Woo(t; n)p converges to Woo(t)p uniformly 
on [0, a]  as n--* oo. 

If A]~ equals zero, the operators Woo(t)p and Woo(t; n)p do not differ 
from each other. In the weak-coupling limit the operator A~ does not 
figure in the master equation for the reduced density operator. {19) Hence, 
one expects that also for large times and small coupling parameter the 
condition of positivity does not cause any difficulties. 

The identity (21) is a useful alternative to the Nakajima-Zwanzig 
equation. It gives us the opportunity to approximate the reduced density 
operator in a controlled way, and respect the yon Neumann conditions to 
some extent. 
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4. N O N - M A R K O V I A N  M A S T E R  E Q U A T I O N  FOR AN 
N - L E V E L  S Y S T E M  

Leaving the abstract mathematical level, we apply the ideas of the last 
section to the physical problem of quantum dissipation. To that end, we 
must define 

Zp = - i [H~ ,@ 1~+ 15eQH~,p]  

Ap = --i[ Vs~ ,  p] 

PoP = (Tr~ p) |  

(23) 

The operators on the right-hand side have been introduced in Section 2. 
We assume that the operators p~ and H~ commute. Then the projector Po 
commutes with the generator Z, as supposed in the previous section. 

We factorize the interaction potential as follows: 

V ~  = ~  V~,| U~, (24) 

The operators V~ and U~ act on ~f~s~ and ~vf~, respectively. By modifying 
the Hamiltonian Hse we can shift each potential U~ such that Try(U~p~) 
equals zero. This implies that Aoo can be put equal to zero without loss of 
generality. As anticipated in Section 3, the operator All never equals zero 
if definitions (23) are employed. 

In the following we shall work with a Hilbert space ~ of finite 
dimension N. The Hamiltonian H ~  has nondegenerate eigenvalues 
{ek} k=],N with {Ik) } ~'=] being the set of accessory eigenvectors. Given 
these assumptions, our quantum system 5" is described by the density 
matrix Pkl(t) --- (kl  pse(t) II). We may identify ~o with the Banach space 
JI(N) of complex (N x N) matrices. The norm of matrix M is given by 
IIMII = sup{ IlMxll/llxll: x ~ C N, x ~ 0}. 

Remember that the matrix p e ,//g is a density matrix iff p is Hermitian 
and has positive eigenvalues, the sum of which equals 1. The norm of the 
density matrix p is equal to its largest eigenvalue. One can easily prove the 
following important statement(34): if a sequence {p,,} of density matrices 
converges to an element p of J /  with respect to the norm on Jr then p 
is a density matrix. Furthermore, Tr(p,,M) converges to Tr(pM) for all 
M ~ J / .  

In the interaction picture the reduced density operator psi(t) is given 
by Try,[ Woo(t) p(0)]. Following the earlier discussion we replace Woo(t) by 
the operator Wo0(t; n). We set integer n equal to 1. Then the presence of 
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the reservoir mani~sts itself via two-point correlation functions. These are 
defined by 

c~p(t) = Tr~(e 'm'' U~e -in~, Upp~) (25) 

Upon using the relations (21)-(25), we obtain the following master 
equation: 

(~) 2 z s) (l-)t-~ p~(t)=ps~+ dsL(t-s ,  p ~ o j  (26) 

with t positive. The superscript (1) reminds us of the replacement 
4 Woo(t)--' Woo(t; n = 1). The operator L stands for the sum Zj= ~Lj, where 

the linear operators { Lj} act on ,g.  They are defined by 

Ll(t,s)p= du~~ c~p(u) Vp(s)pVr 
ap 

L2(t , sip = --~o du Y" c,p(u) V~(s + u) Vp(s)p 
(27) 

and Lj+2(t,s)p=[Lj(t,s)p*]*, with j = l , 2 .  The matrix V~(t)esg is 
equal to exp(iHs~t) V~ exp( - iHse  t). Use has been made of the symmetry 
relation c ~ ( -  t ) =  c~p(t). We should mention that (26)-(27) can be directly 
obtained from the Nakajima-Zwanzig equation (13) by putting the 
operators Aoo and A I~ equal to zero. 

The fact that Lip exists for all p e , g  implies that the operator Lj is 
bounded, because ~g is of finite dimension. Since exp(iHs~t ) is a unitary 
matrix, the norm IIV~(t)l[ does not depend on time. From (26)-(27) it 
is manifest that the norm IIp~)(t)ll is a continuous function of time. It 
therefore is uniformly bounded on each closed time interval. The same 
holds true for the norm IlL(t, s)pll, and thus, by the fact that ~ '  is of finite 
dimension, for the norm IlL(t, s)ll. Hence, it is permitted to represent the 
matrix psp(t)(1) by iterating (26) ad infinitum. 

In Section 3 we have argued that in the weak-coupling limit the 
elements pso(t) and (l~ Ps~ (t) of Jg converge to the same density matrix. We 
prove this statement by discussing the weak-coupling limit of (26). We 
shall find some useful results which will be needed later on. 

The following two assumptions are standard(4"9'~9'35): 

fj 
o~ 

~]lV~ll~v<oo,~ sup o dtlc~.(t)l~c<oo (28) 
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If (28) is true, then the matrix (a) 2 Ps~ ( t / 2 )  converges to t r ( t ) ~ '  uniformly 
on each closed interval [0, a]  as 2 ~ 0. The density matrix a(t)  satisfies the 
Markovian equation # ( t ) = L o a ( t ) ,  with a (0)=Pse-  In the basis { Ik)} the 
operator L0 with domain ~ '  is determined by 

(LoP)k t = ~ (~((Dkt n "~ (.Onl , O) Cttp(OJntk) V~n I g~,km p . . . .  

otflmn 

-- ~, iS~,p(O)k,,,) V~k,,,Vp.,,,kpk,+ ~ i8*p(O),.,) V~,..uVp.1,.pk, (29) 

where 8(a, b) denotes a Kronecker delta, and O)k~ stands for the difference 
e k -  el. The following two transforms have been used: 

f 
+ o o  

.f(a)) = dt ei'~ 
- - o o  

i f(z) = I o  dt e'Z'f(t) (30) 

By the symbol f *  the complex conjugate of the transform f is meant. We 
defer the proof of (29) to Appendix A. The weak-coupling limit of the 
exact equation (13) requires more input than (28). As discussed in the 
literature, t4'9,mg'35) it also leads to the above master equation for the density 
matrix a(t). 

For N = 2  the density matrix a(t)  obeys the Bloch equations) The 
Bloch parameters are given by 

1 7• =) ' l l (~+ F)  

y.r= �89 ~ ~p(o) (  v~,, ,  - v~ ,_9( vp, , ,  - vp ,~ )  

Ylldoo = �89 ~ [ Crtfl(O')12) - -  Cfl=((-021 ) ]  ~/'~., 12 V~,2I 

co o = Re ~ [~a(09,2) - ^* ~r c~p(co~)] l",. ,2 

+ Re ~'  8~p(0)( V~,~ - V~,22)( Vp, n + Vp,22) 
~# 

(31) 

5 At this point we would like to make a small comment. For a two-level system the weak- 
coupling limit as discussed by Davies ~ generates the standard ~3'23-26~ Bloch equations (6). 
Hence, the results of Davies should not be characterized as "physically unacceptable"; 
of. ref. 36. 
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At this point Bochner's theorem comes in. t37) Let f(t) be a complex-valued, 
bounded, and continuous function on R, with the property 

~, yky*f(tk--tl)>~O Vn>~l (32) 
k , l ~ l  

where {tk} c R and {Yk} c C are arbitrary sets. Then for all a ~  R the 
Fourier transform f(o~) as defined under (30) is real and nonnegative. The 
above constraints are obeyed by any function f( t)=Z~p c~p(t)v~v~, with 
{v~} a subset of C. Consequently, relations (31) are in accordance with 
rules (8). This was to be expected because a(t) is a density matrix. 

Next, we examine the master equation (26) for small times and the 
case N =  2. Then the Hermitian matrix p is a density matrix iff the con- 
straints T r p =  1 and Trp2~< 1 are satisfied. From (26) it is obvious that 
the matrix ~l} Ps- (t) is Hermitian, and that the trace equals 1. Inspired by the 
observations made in Section 3, we shall prove the existence of a time 
interval [0, to] on which the inequality Tr p~)(t) 2 ~< 1 is true. 

If T rpsA0)2<  1, then the time interval surely exists, so we may 
assume that the system starts from a pure state. The function Tr Ps~t~)(t)2 
possesses both a first-order and a second-order time derivative. From 
(26)-(27) one infers that at t = 0 the former equals zero, whereas the latter 
is given by 

422 ~'. c~p(O)pk,(O)[p,,.,(O) V~,,,kVp3.,--pt.,(O ) V~ ..... V~.,,k] (33) 
~flkhnn 

Note that at t = 0 the superscript of (]) pC (t) may be omitted. 
After substitution of p~2(0)= [p]](0) P22(0)]]/2 exp(i0) and use of 

definition (25), the derivative takes the following form: 

d2 p.~ (t) 
~ 2 T r  i1) 2 = _ 4 2 2 T r ~ ( W ,  Wp~) (34) 

I = 0  

with the operator W defined as 

w =  Z u A  lp, ,(o) p_n(o)] ,/2 ( v~.,, - v~. v_) 

, V e - ; ~  ( 3 5 )  --Pl l (0)  V~21ei~ + P22(O) ~,12 J 

The derivative is negative, so by the continuity ofp~)( t )  the interval [0, to] 
indeed exists. Observe that at t = 0 the second-order time derivatives of 
p~)(t) and p~(t) are equal to each other. 
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The above conclusion is nontrivial as becomes clear from the following 
example: choose in the Bloch equations do~ = - 1 / 2  and 27• = 711--J, with 
J positive. Because of (8) this choice of  parameters leads to contradictions 
with the von Neumann condition (7). The problems already occur for 
arbitrarily small times. Start from the pure state given by P12=P2] = 
(,O11/922) ]/2 and ,01]= 1 -,022 = [ 1 + 6/(2711)] -1. Then there does not exist a 
finite time interval [0, to] on which (7) is true. 138) 

Choosing N =  2, we write down the master equation (26) in the basis 
{ I1 ) ,  12} }. For  notational reasons we suppress all of  the superscripts (1). 
Introducing again the inversion d ( t ) =  [ ,022(t)- ,0]]( t )] /2,  and returning to 
the Schr6dinger picture, we arrive at the following set of equations: 

f2 p12(t)=e-~~ 2"- ds(e- i~176 

- 22 I~ ds I ~ - ' d u  e - " ~  

d(t) = d(0) + 22 f~ ds (t - s) g(s) 

+22 ds d u [ f 4 ( u ) p ] 2 ( s ) + f * ( u ) p 2 ] ( s ) - f s ( u ) d ( s )  ] (36) 

with o 9 -  o912. The new functions are defined as follows: 

f l ( t )  = ~ [ c'p(t) S~._ Sp,_ - ic"p(t) S~._ Sp. + + 2c'p(t) e "~ V~.,2 Vp.21 ] 

fz(t)  = 2e/'~ Z c'=p(t) V=.]2 Vp.,z 

f3(t) = 2 Y'. [ c'=a(t) S=._ Vp. 12 - ie"p( t) e i'~ V=.lzSp, + ] 
=p 

f4(t) = e -~~ ~. [ c'=p(t) V=.21Sp._ - ic;p(t) V=.2] Sp. + ] 
ap 

fs( t )  = 2 ~ ' ,,o, -i,o, c~p(t)[e V~.lzVp, z l + e  V~.2]Vp.]2] 
~p 

g ( t ) = i ~ ,  " i, ot Vp,2] e - i t~  c,p(t)[e V~.]2 -- ~,21 Vfl,]2] 

h(t)  = o 9 - ] X  " '~' c,p(t)[e V ~ , 1 2 S a _ - S ~ _  Vp,]2] 
ap 

with z ' = R e z ,  z " = I m z  for all z ~ C ,  and S,.+ = V,.22___ V,,]]. 

(37) 



288 van W o n d e r e n  and Lendi 

We investigate the asymptotic behavior of (36) for the case that the 
coupling parameter 2 has a fixed value. Suppose that there are constants 
#12 and d such that the functions p~2(t)exp(iogt)-Pa2, d( t ) -d ,  and 
sup=p [tc,a(t)l converge to zero as t becomes large. Divide the two equa- 
tions (36) by t, and let t go to infinity. Employ assumptions (28) and the 
fact that l im,_~  t -~ ~'o ds If(s)[ = 0 for any continuous function f ( t )  that 
vanishes as t becomes large. We end up with the result 

fi~2=0, d -  dt g(t) dt fs(t)=do~ (38) 

The last equality follows from (31) and (37). 
In short, if the solutions pl2(t) and d(t) of (36) converge for fixed 2 

and t going to infinity, then their limiting values are equal to zero and do~, 
respectively. These are the values of the weak-coupling limit. Hence, for 
almost all initial conditions the master equation (36) will obey the yon 
Neumann condition (7), with t sufficiently large and 2 finite. 

5. EXPONENTIAL FIT FOR THE CORRELATION FUNCTION 
OF THE RESERVOIR 

In the remainder of this paper we shall study the evolution equations 
(36). They can be reduced to a set of algebraic equations by means of 
Laplace transformation. One finds 

z 

1 \  a(z) / 

p 12(01 + iCO~ 2]~(Z __ CO)/Z x 

= p2,(0) + ico22/~*(-z* - c o ) h )  (39) 

a(o) -  2g(z)/z I 

The transform f was defined under (30). Again, by j~*(z) the complex con- 
jugate of the transform f(z)  is meant. Application of Cramers' rule and use 
of the inverse transformation f ( t )  = i(27t)-~ Jc dz exp( - izt) f (z)  gives us 
the solutions of (36); contour C is defined by the prescription z" is constant 
and positive. Unfortunately, we meet integrals that cannot be evaluated 
easily. They contain the Laplace transform of the reservoir correlation 
function. 

In order to simplify (39) we first replace the potentials { U=} by a 
single potential U, so that one may write c=p(t)= c(t). As a consequence, 
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we encounter the sums Z ,S~ , •  in (37). These are assumed to be equal 
to zero. Consider for instance a two-level atom which interacts with the 
radiation field via its electric dipole. If the states { l1 ) ,  12)} have a definite 
parity, then the sums ~ ,  S,.• indeed vanish. As a result, (39) falls apart 
into one equation for d(z)  plus two coupled equations for/~12(z) and ~21(z). 
From (36) we see that d(t)  now satisfies a Volterra equation of the second 
kind. In the literature ~39) it is known as the renewal equation. 

As a further simplification we replace the correlation functions c'( t)  
and c"(t)  by simple exponential functions. ~13) We take into account the 
initial condition c" (O)=0 ,  which follows from (25). Our Ansatz is 

c'(t) = Ae  -~nl', c"(t)  = Bte  -~ (40) 

where r/ and 0 are dimensionless positive reals, and the time t must be 
positive. The constants A and B can be expressed in terms of physical 
parameters by returning to (31). We obtain 

2 
s Vet, 12 A = 1 ~ -  l~)~[(ff2 -[- y/2) 

(41) 

v , . , 2  a =  - � 8 8  + 05) 2 

with the definitions ~ = o9/~,, and co = col2. 
In practice, the correlation functions c'(t)  and c"(t)  do not decay 

exponentially fast. Nevertheless, it is instructive to work with the exponen- 
tial fit (40). Since each Laplace transform is now a meromorphic function, 
the solutions for p~2(t) and d(t)  can be calculated explicitly. This gives us 
some idea as to what kind of dynamical behavior we can expect from (36). 

Employing the above-discussed assumptions, we find from (37) and 
(39) 

z) P - l ( z ) [ ( z  + i r l ) 2 - - (  2] {d(O) 
22doo(z d- iO)((2 d-02)2 l 

~IIt~(Yll 
= + z ~ + t = 0 7 - - ~ - ' ~  J (42) 

P( z ) = z 3 + 2#IZ z - ( ~2 + ~12)( 1 + 2 2/rl ) Z - i22(~ 2 + r/s) 

To determine the position of all poles of d(z)  one must evaluate the roots 
of the polynomial" P(z) .  We do so for 2 tending to zero, and subsequently 
calculate lima_ o d(t / t2) .  As expected, this yields the Markovian result for 
the inversion that was given under (6). 

The atomic frequency defines a time scale CO - I  o n  which the 
experimentally observed inversion does not vary appreciably (see ref. 25, 
p. 47). Hence, in evaluating the zeros of P(z )  for finite 2 one may treat 
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as a parameter  that  tends to infinity. In leading order of ( we obtain 
1 "~ z = +_a( - ib and z = - i c ,  with a = ( 1 + 22/r/) ~/2, b = a-2q(  1 + ~2-/q), and 

c = a-2~. 2. If  both  ( and 22( tend to infinity, then the inversion comes out 
a s  

d( t) = d ~  + [ d ( O ) - d ~ ( 1  + 22/~1- 22/0) ](1 +22/q) - '  exp[-Tit22t/(1 + 22/q)] 

+ [d(O)22/q + d~,~l/O](1 + 22/q) -1 cos[(1 + 22/q) 1/2 cot] 

x exp [ - qYli t( 1 + �89 1 + 22/q) ] 

+ do~ r/0-1 [yll t(O - q) - 1 ] cos(cot) exp( -OYtl t) (43) 

Note  that  it is forbidden to take 2--* 0 in the above result. Often, 
experimental  time resolution is insufficient to detect signals which oscillate 
with the atomic frequency co. Then the last two contr ibutions of  (43) can 
be omitted. Phrased differently, for t/> T one may  replace (43) by the 
Markovian  evolution law 

d(t) = d~ + [d(0)ef r -  do~] e x p ( -  71l.efrt) 

where the time T is of  order co- i. The effective initial condit ion (lO) and the 
effective relaxation constant are given by d(0)err= [d(0) + d ~ / 0 ]  x ( 1 + q-1 ) - 1  

and 71i,e~ = )'it( 1 + r / -  ~) - ~, respectively. 
The result (43) corroborates  the statement that  for a quan tum dis- 

sipative process one has to distinguish three time scales: the durat ion co - i .  
of one atomic oscillation, the decay time re of  reservoir correlations, and 
the decay time 7IT I of observables. In s tandard experiments the three time 
scales are well separated from each other according to co >> re- ] >> 7tl. These 
inequalities underlie the Markov  approximat ion.  (3''~ Within the 
f ramework of the exponential  fit (40) the last remark  can be proved 
explicitly. We have 

l imd( t /22)= lim d(t)l~=l (44) 
2 ~ 0  ~ , q , O ~  

where d(t) must be evaluated on the basis of (42). The limit on the right- 
hand side should be taken such that  it is the mathemat ica l  implementat ion 
of the above-given physical inequalities. Hence, one may  choose ~ = q2, 
0/r /= const, and let r /go  to infinity. 

F rom (36) the conditions d(t ) i ,=o=d(O) and d ( t ) [ , = o = 0  are found. 
The result (43) obeys the first condition only. In order to remove this 
inconsistency we have to return to (42), and evaluate the inversion up to 
order ~-1. One arrives at a rather lengthy expression, which of course 
includes the complete r ight-hand side of  (43). Now the time derivative is 
indeed zero at t = 0. 
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To explain what is going on we take a look at the functions g , ( t ) =  
t -  n-~ sin(nt), with n a.positive integer. These functions are encountered in 
order (-~.  At t = 0 the derivative of g,( t)  equals zero, but at the same time 
one has go~(t) = t. Hence, as n increases, the time derivative tells us less and 
less about the function itself. For higher-order derivatives the situation 
is even worse. In conclusion, for large values of ( there is no point in 
examining time derivatives of the density matrix. Results such as (34) are 
of little value then. 

In Fig. 1 the inversion d(t) as given by (43) is plotted against ~,itt. 
The values of our parameters are ( = 10, ,7 = 1, 0 = 2, and 2 = 1. In Fig. la 
we have chosen d (0)=  1/2 and d ~ =  -1 /2 ,  so here a dissipative process 
takes place. The smooth curve corresponds to the Markovian result 
d(t) = - 1 / 2  + exp( -) ' l l  t). For ~'tt t >-6, oscillations in the curve (43) have 
damped out, and the distance to the Markovian curve is negligibly small. 
Note that for all times one has [d(t)[ ~< 1/2. If p~2(t)=0, this is precisely the 
von Neumann condition (7). 

For the process described by Fig. lb dissipation of the energy 
T r [ H s e p z ( t )  ] is absent, because we have chosen d ( 0 ) = d ~  = -1 /2 .  The 
curve generated by (43) oscillates around the straight line d ( t ) = - 1 / 2 ,  

d(t) 

0.2 

2 , t (a) 

d(t) 

-0.2 

-0.3 

-0.4 

-0.5 

-0.6 

2 4 6 
t (b) 

8 I0 

Fig. 1. Plots of the inversion (43) for ff = 10, q = 1, /9 = 2, and 2 = I. At the horizontal axes 
the time t is measured in units of ?~-t. (a) d ( 0 ) =  1/2, d~ = -1 /2 ;  the smooth  curve represents 
the Markovian result. (b) d ( 0 ) =  d~ = -1 /2 .  

822/80/I-2-19 
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which represents the Markovian result for the inversion. The oscillations go 
through minima which lie below -1 /2 ,  so the von Neumann condition (7) 
is violated. At first sight this seems to be strange, because Fig. lb stands for 
a trivial process. However, because of the choice d ( 0 ) = - 1 / 2 ,  the exact 
inversion will take on values which are only marginally greater than - 1/2. 
Hence, in approximating the exact density matrix (3) already a minor error 
can result into a contradiction with (7). 

We repeat the calculation leading to (43) for the off-diagonal P12(t). 
Defining ~= V=,12 = 1~= V0t. 12[ exp(i$), we obtain 

Pl2(t) = �89 12(0) + p21(0) exp(2i~b) ] 

x (1 + ;t2/~/)-' exp[ -~/)'11 t/(1 + 22/v/)] 

+ �89 +2"-/1/) - '  e x p [ - i ( 1  + 2Z/rl)l/2o9t - �89 + 22/r/)] 

+ �89 A _( 1 + 22/r/) - '  exp[ i( 1 + 22/q)mo9t - 1),l122t/( 1 + 22/q)] (45) 

where we used the abbreviation 

A:L = p12(0)[ 1 +_(1 + 22/r/)1/2 + �89 -- �89 2;* (46) 

The result (45) is valid for all 2/> 0 and obeys the constraint p ~2(t)l,=o = P ~2(0). 
As for the inversion, one can specify under which physical circumstances 
the weak-coupling limit may be taken. We have 

l im  eiC~ lira ei'~ (47) 
2 ~ 0  (,rl.O~oo 

If we take the limit on the right-hand side in the same way as in (44), then 
for the off-diagonal P12(t) the expression (45) may be inserted. Use must be 
made of the relation o90 = o9/(2~/), which follows from (31) and (40). 

6. EFFECTIVE RELAXATION CONSTANTS 

In this section we aim at calculating effective values for the relaxation 
constants 7• and ~11 on the basis of the evolution equations (36) and the 
exponential fit (40). The diagonals { V=.kk} are assumed to be nonzero. For 
a single two-level atom this is the case if a permanent electric dipole 
moment is present. For a gas of two-level atoms one may argue that 
collisions destroy any parity of the states {[1), 12)}. In other words, 
by allowing the matrix elements { V=.kk} to be nonzero, one phenomeno- 
logically takes into account collisional damping. 

The solutions P12(t) and d(t) of (36) are found by applying Cramers' 
rule to the matrix equation (39). Owing to the use of the exponential fit, 
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the transforms Pl2(Z) and d(z) are everywhere analytic, except for a finite 
number of poles. One of these is located at z = 0; its residue generates an 
asymptotic value, because one can write l i m z ~ o z f ( z ) = l i m , _ ~ o f ( t )  
whenever the right-hand side exists. 

Under the inverse Laplace transformation each pole z = u -  iv, with u 
and v real, gives rise to a factor e x p ( - i u t - v t ) .  Thus, all of our poles must 
have a negative imaginary part. The physically interesting poles lie directly 
below the real axis. They can be evaluated by solving for the zeros of the 
determinant Dc of the coefficient matrix of (39). The inequality t/, 0>> 1 
guarantees that all poles z # 0 for which Dc is nonzero lie far below the real 
axis. 

The calculation of the determinant Dc is a technical job that is carried 
out in Appendix B. One obtains De = Pl2(Z) /N(z) ,  with 

12 
Pl2(Z)= E a,,(--iz/711)" 

.=0 (48) 
7~lN(711z) = (z + #l)(Z + iO) 2 [(z + it/) 2 - ~2] [ (z + iO) 2 -- ~2] 2 

where the coefficients {a.} are real. 
As discussed in Appendix B, for small coupling parameter ;t two roots 

of the polynomial Pl2(Z) are given by z = -iTIq 22 and z = co + (coo-  i 7 . ) 2  z. 
In the interaction picture these poles precisely generate the exponential fac- 
tors e x p ( -  7lit) and e x p [ -  (7• + io%)t l, which are found upon solving (6). 
In order to derive this satisfactory result, one needs the relations 

F =  �88 (~ + ~-') 
(49) 

coO = l q -  1~)11 ~ _~_ /~-- 10--3~IIV +/)_ doo(~2 + 02)2 

where we defined v• = Z ,  (V~,2z +- V~, i i)/lY'., V~.,2I. The result (49) follows 
from (31) and (40)-(41). 

Taking ~l fmite again, we solve for the roots of P]2. As in Section 5, we 
let the parameter ~ go to infinity. One should be aware of the fact that the 
constant F and the ratio coo/co must remain finite. Hence, we have to 
assume that both v+ and v_ are of the order ~ - '  for large values of ~. 
Without this assumption the exponential fit breaks down because of (49). 
In calculating the coefficients {a,} we first eliminate v§ and v_ in favor of 
the parameter F and the ratio q = v+ I v_ .  Subsequently, we take ~ large. 
The results are presented in Appendix B. 

If z = w is a root of P,z (z ) ,  then z = - w *  is a root as well. For large 
values of { a root can behave in one of two ways: either it linearly 
depends on ~ according to z / T l l = a ~ + b ,  or it remains finite in norm. 
The roots of the first type govern the time evolution of the function 
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exp(icot) p]2(t). They can be used to calculate an effective value for the 
relaxation constant y• The roots of the second type do not generate any 
rapidly oscillating factors exp(-t-icot). They determine the evolution of 
the inversion d(t), and therefore give rise to an effective value for the 
relaxation constant )'11" 

We substitute the above-given linear form for z/TN into P12(z) and 
collect all terms which are of the same order in (. This yields the equation 
Plz(z) = cl (12 + c2(ll + c3(lo + . . . .  0. Since ~ tends to infinity, each of the 
coefficients c], c2, and c3 must equal zero. From (B4) and the equation 
ct = 0 we find a 2 = 1 and a 2 = 1 + 22/r/. Both solutions occur with a multi- 
plicity of 2, so there exist eight poles of type 1. 

From the equality a2= 1 we infer that the coefficient c2 equals zero. 
The same is true for the equality a2= I + 22/q. In order to evaluate c3, one 
has to calculate the coefficients {an: n =2 ,  3, 5, 7, 9, 11, 12} in leading 
order of( .  Furthermore, for each of the coefficients {a,,: n- -4 ,  6, 8, 10} one 
has to calculate the next-to-leading contribution as well. All of the corre- 
sponding expressions are listed under (B4). 

The equality c3 = 0 boils down to a quadratic equation for b. With the 
choice a 2 = 1 both solutions are given by b = -iO. The choice a 2 = 1 + ).2/r/ 

yields a more interesting result, namely 

b = - �89 1 + r/(1 + 22/~/) ] (50) 

The real root r is positive and defined as 

2 2 ( d  q ( d ~  r/ r 2 = l + F [ 4 d ~ q o + - -  ~ q ~ - - 2 ) ] [ 2  -22~ q ~ - 2 ) ]  (51, 

Note that F is of order r/-2 because of the inequality (>>q and the 
assumption v_ ~ ( - ~ .  Hence, the right-hand side of (51) is positive for r/ 
sufficiently large. 

All poles of type 1 have now been evaluated. Two of them lie close 
to the real axis. They have the same imaginary part, which is found by 
choosing the minus sign in (50). Hence, we can introduce the following 
effective relaxation constant: 

?• = �89 1 --r/(1 + 22/r/)] (52) 

where one should choose 2 = 1. For q going to infinity the relaxation con- 
stant 7• converges to ),• Note that 7• equals 711/2 because the constant 
F vanishes. 

If the product d~ q is positive, then root r has no upper bound. As a 
consequence, 7• can become negative. Accordingly, we have to restrict 
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ourselves to the case do~ q < 0. Now one can write r = (1 -p)~/2 ,  with p real 
and positive. For  q sufficiently large and rl/O of  order 1 we also have p ~< 1, 
so that  ?• is real and positive. 

The polynomial  P~2 possesses four roots of  type 2. In leading order of 
( they satisfy the equat ion Z 4 = o lim~ ~ oo (a , , /~)(  - iz/Tii)"  = 0, which can be 
solved by means of s tandard formulas. (4~ 6 It  turns out that  for r/, 0 ~> 1 all 
four roots  lie on the negative imaginary axis. Only one root  lies in the 
vicinity of  the real axis. Hence, also for the relaxation constant  ~'ll we can 
propose an effective value. Up to order r / -  3 it is given by 

71122 rl-17i11"d~q).4(1 + 2do.q) (53) 
Ytl'~rr= 1 + 22/r/ 

where ~. should equal 1. We have set r /equal  to 8. In many  cases the second 
term on the r ight-hand side may  be neglected. For  ), = 1 and r/ going to 
infinity the relaxation constant  Yli,r converges to ~'11" 

Since I 1 ) is the ground state of  our  two-level system, it is reasonable 
to assume that  V~,]I = 0  for all ~. We put  do~ equal to - 1 / 2 ,  2 equal to 1, 
~/equal to 0, and define x = Go_. Then Eqs. (52) and (53) reduce to 

1 { [ r/4 --/r 5/4)2 ] 1/2.} Yll (54) 
y• ~),ll r/ l + r /  ' Yti'~fr= 1 + l/r/ 

The square root  is real and positive for r /> r/o, with 2r/o = IKI + (x2+ 5 Ixl) ~/2. 
Because of the remark  right below (8), the ratio d,fr---,Zll ,fr/Y• err should be 
smaller than 2. For  r /=  r/o this is indeed true. If  I~cl > ~/2, 'then ~efr converges 
to 2 from below as r /becomes  large. 

We compare  the ratios d~fr and ~ = )'11/~'• with each other. Since ~ is 
large, the latter can be written as 

2 
= ( 5 5 )  

1 + K2/(2r/2) 

We choose F =  10/r/2, so that  x 2 =  40. The question arises of  what  values 
of r /a re  physical. One can use the criterion that all of the physically irrele- 
vant poles must  lie below the line z"l~/tl = - 2 0 .  This is true if r / is  slightly 
larger than 20. 

As can be seen from Table I, for 20 ~< r/~< 100 the values of  c~,fr are 
markedly different from those of ~. Fo r  a two-level a tom ~ is of  order l0 s 
(ref. 25, p. 47), so all r/ values of  Table I satisfy the inequality ~" >> r/ very 
well. The ratio [Y'.~ Va.22//~ct V~,t2[ is equal to x / / ~  - 10 -s.  

6 For r/= 8 one solution is given by z = -ir/Yii. 
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Table I. The Rat ios 6.ff and 6 as a 
Funct ion of  the  Parameter  q for  d~o = -1/2,  

A = q = l ,  Ka=40, and q = O  

20 0.925 1.905 
30 1.155 1.957 
40 1.303 1.975 
50 1.406 1.984 

100 1.659 1.996 
1000 1.961 2.000 

Upon increasing IK[, differences between the effective relaxation con- 
stants and their Markovian counterparts become even more pronounced. 
Take x = 100; then for r/t> 5000 the ratio ~ is greater than 2 - 10-3. On the 
other hand, for q = 5000 the ratio ~efr is equal to 1.000, and for q as big as 
105 its value merely amounts to 1.905. 

The above findings certainly are of experimental relevance. At the 
same time, we must remember that the quantity 6err has been calculated on 
the basis of the approximate master equation (36) and the exponential fit 
(40). Furthermore, we should be cautions if it comes to identifying the 
dynamics of the system 5 a with the physics that is observed. Our reduced 
density matrix describes the time evolution of a microscopic entity such 
as a two-level atom. In experiments one usually measures macroscopic 
quantities, e.g., the induced polarization of a gas of 10 23 molecules. The 
road from our one-particle theory to experimental reality is a long one. 
Several tough problems must be overcome, for instance, interactions 
between particles, damping through collisions, and inhomogeneous effects 
such as Doppler broadening. 

7. CONCLUSION 

The quantum mechanical description of dissipative processes on the 
basis of non-Markovian master equations constitutes a complicated topic 
in statistical physics. In this article we studied the issue at three different 
levels. First of all, some rigorous results were established. They respect the 
basic laws of quantum mechanics. 

In Section 3 we constructed the inverse of the quantum dynamical 
map that governs the evolution of the reduced density operator. This 
enables one to cast the old Nakajima-Zwanzig equation in a form which 
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is local in time. Furthermore, we combined perturbative methods with pro- 
jection techniques so as to derive a modified Nakajima-Zwanzig equation. 
Up to nth order in the coupling parameter ,l the new equation contains all 
terms out of the perturbation expansion for the reduced density operator. 
The character n stands for any positive integer. 

Both the modified and the standard Nakajima-Zwanzig equation are 
formal identities which essentially represent an infinite hierarchy of equa- 
tions. Hence, in order to perform practical calculations at finite values of 
the coupling parameter, one is forced to leave the rigorous level. At this 
point the modified Nakajima-Zwanzig equation proves its value. If we 
drop one single contribution, then we obtain a non-Markovian master 
equation that lends itself to practical applications. 

Of course, the solution of the new equation does not coincide with the 
exact reduced density operator. However, through the integer n one has 
complete control over the corresponding error. Moreover, the error con- 
verges to zero if the weak-coupling limit is taken. Because of these facts, the 
modified Nakajima-Zwanzig equation should provide an excellent basis for 
performing exact numerical work on the evolution of open quantum systems. 

For n equal to unity our approximate master equation reduces to the 
simplest non-Markovian evolution equation one can think of. r It can 
be directly found from the Nakajima-Zwanzig equation by discarding all 
reservoir correlation functions of order three and higher, as well as all 
products of correlation functions. In Section 4 we investigated whether the 
simplest non-Markovian master equation can furnish predictions which are 
physically relevant. Particular attention was paid to the von Neumann 
conditions. 

Focusing on a two-level system, we demonstrated that both for small 
and for large times the von Neumann conditions are not seriously violated. 
For an N-level system we proved explicitly that in the weak-coupling limit 
the solution of the simplest non-Markovian master equation no longer 
differs from the exact reduced density operator. As a byproduct of the 
proof one finds an interesting statement on the conditions under which the 
weak-coupling limit may be taken in the Nakajima-Zwanzig equation. The 
standard conditions as given in the literature are insufficient if the Hilbert 
space for the system is of infinite dimension, and if the potential describing 
the interaction between system and reservoir is an infinite sum of product 
operators. 

In Sections 5 and 6 we descended to a completely phenomenological 
level. In the simplest non-Markovian master equation the correlation 
functions of the reservoir were replaced by exponential functions. The 
amplitudes of these functions were expressed in terms of physical param- 
eters by making use of the weak-coupling limit. Within the framework of 
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this exponential fit we found a physical limit which is fully equivalerit to 
the weak-coupling limit. Again we specialized to a two-level system. 

The exponential fit allows us to derive the Bloch equations from the 
simplest non-Markovian master equation at a fixed value of the coupling 
parameter. In the ensuing Bloch equations the rate of dissipation is deter- 
mined by effective relaxation constants Y• and Yi~,ar, which explicitly 
depend on the correlation time of the reservoir. Under normal physical 
circumstances the effective constants can differ from their Markovian coun- 
terparts y• and Yil by no less than 50%. Findings such as these suggest 
that one should undertake further investigations. For instance, the 
dynamics of the simplest non-Markovian master equation could be studied 
for more realistic choices of the correlation functions. Also, one might 
attempt to carry out analytic work for master equations of higher order. 

A P P E N D I X A .  THE W E A K - C O U P L I N G  L I M I T  F O R A o o = A 1 1 = 0  

We shall demonstrate that for 2 tending to zero the matrix p~(l)(t/22) 
satisfies a Markovian master equation, the generator of which is given by 
(29). We remark that this appendix may very well serve as an introduction 
to the important work of Davies. (14"~9) 

Let us introduce the linear space cg[0, a]  of continuous functions with 
domain [0, a]  and range in r If the norm [[M[[~=SUpo~,~o JIM(t)[[ is 
used, then :r is a Banach space (ref. 29, p. 27). As already discussed, (26) 
may be iterated ad infinitum. The result reads 

(I) 2 ~, p~(t/2 ) = P s - +  ~ (.Sf~Ps~)(t)-~(t)" (A1) 

with t e [0, a]  and 2 > 0. The series on the right-hand side converges in the 
norm on <g. The operator .~ :  <g ~ <r is bounded and defined as 

(s f~ d s L ( t - s  s )  22 , s M(s) (A2) 

where M(t) belongs to c~. 
Under the use of induction, the assumptions (28) lead to the following 

inequality: 

(ah)" 
IIL::MII. ~< T IIMII. (a3) 

with 2 and n positive. The constant h equals 4cv 2. Since ~/  is a complete 
space, the assumptions (28) also imply that for j =  1, 2, 3, 4 and all M e  
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the matrix Lj(t, s)M converges to an element of •! as t becomes large. The 
new matrix will be called Lj(oo, s)M. For all s>~0 the operator L(oo, s ) -  
5-',~= ~ Lj( oo, s) is bounded with respect to the norm on ~r 

Because of the fact that L(oo, t/)tZ)M(t) belongs to cg for each 
M(t) e~g, we can define the bounded operator ~ :  c g ~  rr as follows: 

(X,~M)(t)-- dsL co,~2 M(s) (A4) 

with 2 positive. The equality (A3) remains true if ~ is replaced by the 
operator :,Y(~. Hence, by completeness of cg we find that for all ;L > 0 the sum 

Xx(t)=-pz+ ~ (~,U]ps,.)(t) (AS) 

represents an element of qr 
Use of the operator identity 

n-- I 
A n --  O " =  2 A r ( A  - B )  O ' ' - 1  - r  (A6) 

r ~ O  

with n a positive integer, as well as relations (A1) and (A5), brings us to 
the following inequality (ref. 14, p. 141 ): 

IIq~,~ -xal l  ~ ~ e 2 ' '  IIP~II I1~,~ - :"~ II (A7) 

with 2 > 0. The operator norm on the right-hand side is the sup-norm on 
the space c~. From (28) and the definition of L(oo, t) one deduces that 

[12*~ ~ 4 v  2 sup dsp _ <.4v221/2p(O) +4v2(a-2UZ)p(2-3/2) 
O<~t<~a 

(A8) 

We have made use of the definition 

f t  ~176 
p(t) = sup ds [c,#(s)] (A9) 

so that p ( 0 ) =  c. To derive the second inequality of (A8) one must carry out 
the transformation s ~ t - s and divide the integration interval into the two 
parts [0, 21/2-] and [2 I/2, a].  

Since the Hilbert space ~s-  is of finite dimension, the parameters 
and fl go through a finite number of values. Hence, (28) implies that 
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lim, ~ o~ p(t)= 0. Consequently, the right-hand side of (A8) goes to zero for 
2--, 0. We therefore arrive at 

lim II~a-zall,~= 0 (A10) 

The following should be emphasized. If 0c and fl can take on infinitely many 
values, then (28) does not say anything about the asymptotic behavior of 
the function p(t). Choose, for instance, cj(t) =j/( j2 + t2). Now p(0) exists, 
but at the same time one has p ( o o ) = z r / 2 r  Hence, the standard (4'9'35) 
conditions for deriving the weak-coupling limit apply to the case in which 
the sum (24) is finite. 

We still have to prove that Xa converges to an element of cg if 2 
becomes small. Because of the equality limb ~ oo b - i ~b ds exp(io9s) = 
6(o9, 0), one can prove for each M ~ . / / a n d  x, y s  C u the identity 

Jimoo (x ,  ( b - '  I~dsL(oo, s) M ) y ) = ( x , ( L o M ) y )  (Al l )  

where ( . ,  �9 ) denotes the inner product on C N. We have used the definition 
(29) of L o and the fact that ek = et iff k = I. 

Since dr is of finite dimension, identity (Al l )  implies that the matrix 
b -~ Ib o ds L(oo, s )M converges in norm to the matrix LoM as b becomes 
large. By using d i m ( J g ) <  oo again, we see that one may even write 
l imb-  o~ IlJb[I =0 ,  with Jb=b -I ~ ds L ( ~ ,  s) - L o ,  and II' II the sup-norm 
on J / .  

The operator ~ff: ~g ~ ~' is defined by (:;ffM)(t) = j~o ds LoM(s). Upon 
replacing in (A3) the operator ~a by ~ and the real number h by IlZoll, 
we obtain an inequality that is true. Therefore, the sum a(t) = 
Pse +~,,,~ represents an element of c~. It obeys the following 
Markovian master equation: 

or(t) = Ps~ + ds Locr(s ) (A12) 

From (A6) one finds for all positive integers n the result 

. , -  1 (ah)r 
I l x~ -a l l ~  ~. ~ . t  I 1 (~ -  ~ )  ~ -  ~ - 'p~ll~ 

m = l  r = O  " 

+ 2  IIp~ll ~. [max(h, IILoll)a]"/m! 
n l ~ ? ; +  I 

(A13) 
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It follows that the norm IIXa-aI[~ goes to zero for 4---,0 if 
lima ~ 0 II ( ~ -  X)MII  ~ = 0 for all M(t )~  ff which possess a time derivative 
2kr(t) ~ (g. 

Via two partial integrations we obtain from the definitions of the 
operators 3ff~ and aft the identity (ref. 14, p. 132) 

[(o,Ua- ~ff)M](t)  = tJ,/a,M(t) - ds sJ~/a2.,~l(s) (A14) 

It gives rise to the inequality 

sup IItJ,/~,-II (A15) 
O ~ t < ~ a  

Divide the interval [0, a]  into the two parts [0 ,4 ]  and [2, a]. By 
employing the assumptions (28) we end up with 

sup IItJ,/aall ~<2(4C02+ I I L o l l ) + a  sup 111311 (A16) 
O<<t<~a a - I  ~< t <~aa-2 

Since [IJ~ll is continuous in 3, the supremum on the right-hand side 
of (A16) may be replaced by the norm HJ~tz)[[, with 3(2) a real number 
satisfying 3(2)t>2 -~. Consequently, the right-hand side of (A15) vanishes 
if 2 goes to zero. In other words, we have proved the equality 
lima ~ o [IXa- a][ ,~ = 0. Together with (Al0), it leads us to the following final 
result: 

lim sup [Ip%)(t/22)-tr(t)ll=O (A17) 
a~00<~t<~  a 

The constant a is positive, and the matrix a(t) satisfies the master equation 
(A12). 

A P P E N D I X B .  C A L C U L A T I O N  OF D E T E R M I N A N T  Dc 

In the main text we defined Dc to be the determinant of the coefficient 
matrix of (39). Denoting the Laplace transforms of c'(t) and c"(t) by r(z) 
and s(z), respectively, and combining the assumption c~p(t)=c(t) with 
(37), we arrive at 

D c = z 3 _ u222z2A I(Z) -- r -at- cou222zAz(z) + u424zA3(z) 

+ 2ooZuZ22A4(z) + 2cou424As(z) (BI) 
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with 

A t ( z ) =  

A,_(z) = 

A3(7 .  ) = 

(2 + v-'_ ) [ r (z  + co) + r(z -- w)]  + 4r(z) + iv + v_ [s (z  + co) -- s(z  -- co)] 

vZ_[ r(z + co) - r(z - c o ) ]  + iv+ v _ [  s(z  + co) + s(z --co)] 

(4vL + vL ) r(z + co) r(z - co) + v+ v2__ s(z + co) s(z  - co) 

+ iv+ v_(2 + v 2_ ) [ r ( :  --co) s(z + co) - r(z + co) s ( :  --co)] 

+ 2(4 + v 2_ ) r ( z ) [ r ( z  - co) + r(z + co)] 

+ 2iv+ v_ r ( z ) [ s ( z  + co) -- s(z  - co)] 

+ 2iv+ v_ s ( z ) [ r ( z  - co) - r(z  + co)] + 2v2+ s ( z ) [ s ( z  + m)  + s(z  - co)] 

A4(z) = r(z + co) + r(z -- co) 

As ( z  ) = v+ s(z)[  s(z -- co) - s(z  + co)] + iv + v_ s(z)[ r( :  + co) + r(z - co)] 

- i v +  v _ [r(z + co) s(z - c o )  + r ( z  - co) s(z + co)] (B2) 

We defined u =  [Z,  V~.t2[, and v+ =~2,  S~.+/u. Note  that in the course of 
calculating Dc one meets contributions which contain 26 as a factor. They 
add up to zero. 

By employing the exponential fit (40)-(41) we obtain 

u2r(.~) = YlI(~2 + q2) t12S(2) =yl ld~ ' (52+O2)2 (B3) 
&l(Z/TLi + Ol)' 4i{O(z/Tll + iO) 2 

The evaluation of the coefficients {a,} as defined in (48) is now a matter  
of tedious algebra. Use should be made of the fact that the parameter  5 is 
large. As explained in the main text, one must assume that v+ and v_ both 
are of order ~-1. 

All coefficients have been evaluated in leading order of ~'; for some 
coefficients the next order has been evaluated as well. We have employed 
relation (49) and the definition q = v + / v _ .  The results are given by 

a t2=  1, a t l = 3 q + 6 0  

a to = ~-" [ 4 + 2r/- J 2 2 ] + 3q 2 + 18q0 + 1502 + 2r/2-'( 1 + F) 

a 9 = 52[ 10r/+ 200+  4r/- t22(q + 30)] + (-0(~ "~ 

a8 = ~4[ 6 + 6r/- 12z + r /-224] 

+ ~2[ 9r/2 + 48q0 + 4202 + r /- t22( 8r/2 + 24~/0 + 3002 + 2r/-'F 

+ 6d<. qq30 - i F )  + 224( 1 + F ) ]  + (_9({ ~ 

a7 = 54[ 12q + 240 + q- t22(  10r/+ 280) + r /-  2)1.4(q + 60)]  + (9(52 ) 
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as = ff614 "-k 6q-122 + 2r] -2)1. 4 ] 

.~_ ( 4 [  9q2 ..1_ 441"/0 4- 4002 q- t] - 122( 11 q2 + 44q0 + 5402 - 2~12 F 

+ 4d~ qrlSO-IF) + ~1 - 2 j 4 ( 4 q 2  + 6qO + 1502 + 4q21" 

+ 2do~qq30 - 11-'+ d~.q2~140-21")] + (9(~ 2) 

a 5 = ~616q + 120 + q -~22(8~ + 200) + q-224(2q + 80)] + 60(~ 4) 

a 4 = ( 8 [ 1  q -q - l )~2 ]2 -a t - f f613q2-4 -16q0+  1402 

+ q -122(6q2 + 24~/0 + 2602 -- 2 t /2 / ' -  2do~.qq30-IF) 

+ 2~/-224(q2 + 4rio + 60 ~- + q 2 F -  d~ q2q40-2F)] + 0((4) 

as = fiB[ 1 + q -  ~22] 2 (~/+ 20) + (9((6) 

a 2 = ~812q0 + 02 + q -122(~/2 + 4qO + 202) + &/-224(2q + 0 - 2do~ q~laO -2F 

- 3d~.qZq40--aF)] + (_9(~ 6) 

al = ~8{q02 + 20,~2(r/--k 0) q- 027/-124[  l - -  3 d ~ q r l 3 0 - 3 F  

_ ( 3 + 2 q - 1 0 )  , , 4 dGq-q 0-4/" ]}  + (.0(~ 6) 

ao = C a [ ~I0222 - do~ qq30- IF24( 1 + 2do~. q) ] (B4) 

P]2 = { - 2irlO2)t2( 2b 4- (q 4- i()  0222( 2 + lidor v + v _ q O -  122(((2 q- 02) 2 

I V 2 . --10222(2((2 Ar +~ _q r]2)} Q (B5) 

where Q stands for the following polynomial: 

Q = 8ff 6 -q- i(s( 12q + 240) - (4(4r/2 -I- 36~/0 + 2602) 

-- i~s( 12r/20 + 39~/02 + 1203) 

+ (2( 13q202 + 18qO s + 204) + i((6q203 + 3q04) _ ~/204 (B6) 

We always choose F > 0 ,  so v_ cannot equal zero. This implies that the 
ratio q is always finite. 

In Section 6 we claimed that for 2 close to zero the equation P12(z) = 0 
precisely yields the poles of the weak-coupling limit. This statement can be 
proved by substituting in the aforementioned equation z/},H=a2 2 and 
dropping all terms of order 2 4 and higher. One finds a = - i ,  even if the 
coefficients (B4) are used. To calculate the second pole one has to start 
from the full expression for P12, i.e., the coefficients (B4) can no longer be 
employed. Carry out the substitution z/y ,  = ( + b 2  2 and drop again all 
terms of order 2 4 and higher. The terms of order 2 o cancel. One ends up 
with 
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I f  we pu t  the  r i gh t -hand  side o f  (B5) equa l  to zero,  then  we find the second  

pole  tha t  was g iven  be low  (48). 
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